©1984 Pergamon Press Ltd.

PRACTICAL ENANTIOSPECIFIC SYNTHESES OF (+,) ERYTHRO-9-(2S-HYDROXY-3R-NONYL) ADENINE

Elie ABUSHANAB ** Department of Medicinal Chemistry, University of Rhode Island Kingston, R.I. 02881, USA.

Michel BESSODES^{*}and Kostas ANTONAKIS Laboratoire de Chimie Organique Biologique Institut de Recherches Scientifiques sur le Čancer, CNRS Boite Postale 8, 94802 Villejuif Cedex, France.

Abstract : Three enantiospecific syntheses of 1S (2S-benzyloxe-thyl) oxirane (9) from L-ascorbic acid, L(+) tartaric acid, and Z-butene 1,4-diol are reported. The conversion of 9 to 2Shydroxy-3R-nonylamine (19) is also described.

(+)-Erythro-9-(2S-hydroxy-3R-nonyl) adenine (+)-EHNA (1) has been recently identified, among its enantiomer and diastereomers, to be the most active inhibitor of the enzyme adenosine deaminase (ADA)^{2,3}. The inhibition of ADA potentiates the antitumor and anti-viral activity of a number of adenosine analogs ⁴. (+)EHNA is a semi-tight binding inhibitor that dissociates within minutes from ADA, thus avoiding immunosuppression and other toxic side effects associated with long term inhibition of the enzyme 5,6 . This has renewed interest in (+)-EHNA as a potential drug.

The reported syntheses^{2,3} are rather lengthy indicating the need for a practical and versatile route to (+)-EHNA and certain analogs. Amine <u>19</u>, in its racemic 7 and chiral 2 forms, has been incorporated into EHNA. Therefore a suitable synthesis of 19 would satisfy the above objective.

Retrosynthetic analysis led to IS-(2S-hydroxyethyl) oxirane (10). The epoxide provides the necessary functionality for further elaboration into a 9-carbon fragment and subsequently to 19. This paper describes synthetic routes for 9 starting with L(+)-ascorbic acid, L(+)-tartaric acid, and Z-butene-1,4-diol, followed by its conversion to the target compound (19).

⁺ On sabbatical leave from URI at INSERM, France, 1983-1984.

5,6-0-Isopropylidene-L-ascorbic acid ⁸ was oxidatively cleaved 9 to potassium-3,4-0-isopropylidene-L-threonate 10 . This was converted directly to its methyl ester 2 (CH₃I, CH₃CN, 75 %overall yield). LAH reduction of 2 furnished 3,4-0-isopropylidene-L-threitol $(3, [\alpha]_n = +3.99, C = 2.1)$ from which 4 was obtained by selective tosylation (TsCl, Pyr., O°C, overnight). Treatment of an ether solution of 4 with one equivalent of NaOCH₂ gave epoxide 5 which was reduced with LAH to alcohol 6. This compound could be directly prepared from 4 using LAH. Benzylation of 6 (NaH/DMF, BnBr, 25°C) furnished 7 ($[\alpha]_D$ = -10.76, C = 1.69), which upon hydrolysis (CH₃OH, H₂O, Dowex-50) gave diol $\frac{8}{2}$ $([\alpha]_{D} = +25.6, C = 0.89)$. The sequence of reactions starting with 3 when carried out without purification of intermediates 4-7, 11 led to 8 in 51 % overall yield after purification by flash chromatography (initially EtOAc : Hexane 1 : 9 then 1 : 1). When diol <u>8</u> was subjected to the Mitsunobu reaction 12 (Ph₃P, DEAD, 110°, neat) epoxide 9 ([α] $_{n}$ = -10.66, C = 2.88) could be distilled off in 88 % yield.

Epoxide <u>9</u> was also obtained from L(+)tartaric acid and Z-butene-1,4-diol. Tosylate <u>11</u> ¹³, upon treatment with NaI (acetone, 100°), furnished the iodo compound (<u>12</u>). Hydrogenation of <u>12</u> without purification (10 % Pd/C, EtOH) resulted in <u>13</u> (80 % yield from <u>11</u>). The latter compound was also obtained following the Sharpless chiral oxidation method ¹⁴. Isopropylidene <u>14</u> ($[\alpha]_{D}$ = +2.67, C = 1.58) was obtained by treatment of 1-0benzyl-2S,3R-butane-2,3-diol with acetone/CuSO₄. The latter compound was obtained from Z-butene-1,4-diol¹⁵. Debenzylation of <u>14</u> gave <u>13</u> which was tosylated to give <u>15</u> ($[\alpha]_{D}$ = -3.67, C = 1.09). Hydrolysis of <u>15</u> furnished the crystalline diol <u>16</u> ($[\alpha]_{D}$ = -4.53, C = 1.6). The volatile epoxide <u>10</u> was obtained in quantitative yield upon treatment of a cold (0°C) ethereal solution of 16 with NaOCH₃.

On the other hand, when <u>16</u> was treated with two equivalents of NaH/DMF followed by the immediate addition (2min) of benzyl bromide, resulted in the formation of <u>11</u>, identical to that obtained previously.

3842

Completion of the synthesis of 19 followed. Treatment of 9 with $(n-C_5H_{11})_2$ CuLi (2 eq., 0°C, 2hr, ether)¹⁶ gave adduct 17 ([α]_D = +2.04, C = 2.45)¹⁷, from which azide 18 ([α]_D =+13.4, C = 1.31) was obtained¹⁸ (2 Ph₃P 2 DEAD, 2HN₃, benzene, 25°C, 3 hr). Reduction of the azido function and deprotection were accomplished by catalytic reduction (PtO₂, EtOH, overnight). The amino alcohol (19, [α]_D = +12.7, C = 0.40) obtained was identical to that obtained from L-rhamnose².

The developed synthetic methodology is currently being used to prepare analogs of EHNA for further biological evaluation.

 $\frac{ACKNOWLEDGEMENTS}{The}$: The authors thank Dr. Marie Thérèse Chenon for the ¹³C NMR spectra. The technical assistance of Aude Dapoigny and David W. Cabral is also acknowledged.

References

1.	Ар	relimir	nary	accou	Int	of th	is	work	has	been	presented	at	the
	ACS	185th	Nati	onal	Mee	ting,	Se	eattle	, 1	983;	Ábstr. N°	81.	

- G. Bastian, M. Bessodes, R.P. Panzica, E. Abushanab, S.F. Chen J.D. Stoeckler and R.E. Parks, Jr., J. Med. Chem., <u>24</u>, 1383 (1981).
- 3. D.C. Baker, and L.D. Hawkins, J. Org. Chem., 47, 2179 (1982).
- R.P. Agarwal, S. Cha, G.W. Crabtree and R.E. Parks, Jr., in "Chemistry and Biology of Nucleosides and Nucleotides", R.E. Harmon, R.K. Robins and L.B. Townsend, Eds., Academic Press, New York, 1978, pp. 159-197.
- M.F.E. Siaw, B.S. Mitchell, C.A. Koller, M.S. Coleman and J.J. Hutton, Proc. Natl. Acad. Sci., 77, 6157 (1980).
- M.R. Grever, M.F.E. Siaw, W.F. Jacob, J.A. Neidhart, J.S. Miser, M.S. Coleman, J.J. Hutton and S.D. Balarzak, Blood, <u>57</u>, 406 (1981).
- 7. H.J. Schaeffer and C.F. Schwender, J. Med. Chem., 17, 6 (1974)
- 8. F. Micheel and K. Hasse, Ber., 69B, 879 (1936).
- 9. N. Cohen, B.L. Banner, R.J. Lopresti, F. Wong, M. Rosenberger, Y.Y. Liu, E. Thom and A.A. Liebman, J. Am. Chem. Soc., <u>105</u>, 3661 (1983).
- 10. J.M. Perel and P.G. Dayton, J. Org. Chem., 25, 2044 (1960).
- 11. A ditosylate was always formed. Its separation from 4 was avoided by reducing the mixture directly with LAH. Satisfactory elemental analysis, H and C NMR spectra were obtained for key compounds. Optical rotations were taken in ethanol.
- 12. O. Mitsanobu, Synthesis, 1 (1981).
- 13. H. Meyer and D. Seebach, Ann., 2261 (1975).
- 14. T. Katsuki, A.W.M. Lee, P. Ma, V.S. Martín, S. Masamune, K.B. Sharpless, D. Tuddenham and F.J. Walker, J. Org. Chem., <u>47</u>, 1373 (1982).
- K.B. Sharpless, C.H. Behrens, T. Katsui, A.W.M. Lee,
 V.S. Martin, M. Takatani, S.M. Viti, F.J. Walker and
 S.S. Woodward, Pure and Applied Chem., 55, 589 (1983).
- 16. G.H. Posner, Org. React., <u>22</u>, 287 (1975).
- 17. n-pentyl lithium was prepared from 1-chloropentane. The use of 1-bromopentane resulted in competitive bromide opening of the epoxide to give the corresponding bromohydrin. The epoxide was recovered by treatment of this compound with methanolic KOH.
- 18. H. Loibner and E. Zbiral, Helv. Chim. Acta, 59, 2100 (1976).

(Received in France 13 June 1984)